Pioneering and fundamental achievements on the development of positron emission tomography (PET) in oncology.
نویسندگان
چکیده
Positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG), a glucose analog, is widely used throughout the world as an indispensable imaging modality for the management of cancer treatment. This article reviews the pioneering achievements of PET in oncology with a focus on the development of PET that occurred from 1980 through the early-1990s. (18)F-FDG was first applied for imaging of animal tumors in 1980 and for brain tumor imaging clinically in 1982. (18)F-FDG enabled to visualize liver metastasis as clear positive image that could not be obtained by conventional nuclear imaging. Subsequently, (18)F-FDG was used for imaging various cancers, such as lung, pancreas, colorectal and hepatoma. (11)C-L-methionine ((11)C-MET) that reflects amino acid transport of cancers has an advantage that its uptake is lower in the brain and inflammatory tissue compared to (18)F-FDG, and was first applied for imaging lung cancer and brain tumor. (18)F-FDG and (11)C-MET were proved to be sensitive tracers that can be used to objectively evaluate the effectiveness of cancer treatment. The diagnostic accuracy of PET, which is critical in clinical practice, was evaluated for the differential diagnosis of malignant and benign lung nodules using (18)F-FDG or (11)C-MET. In addition to (18)F-FDG and (11)C-MET, many radiopharmaceuticals were developed, such as (18)F-labled thymidine analogs for evaluating proliferative activity, (18)F-fluoromisonidazole for imaging of hypoxia, and (18)F-fluorodeoxygalactose for evaluating liver-specific galactose metabolism and for imaging of hepatoma that retains galactose metabolic activity. These early efforts and achievements have greatly contributed to the development and clinical application of (18)F-FDG PET in oncology.
منابع مشابه
The effect of fasting on Positron Emission Tomography (PET) imaging
As a nuclear approach, Positron Emission Tomography (PET) is a functional imaging technique which is based on the detection of gamma ray pairs emitted by a positron-emitting radionuclide. There are certain limitations to this technique such as normal tissue uptake. Therefore, it has been recommended that patients prepare before scanning. Fasting for a short while before PET imaging is an exampl...
متن کاملDiagnostic Performance and Safety of Positron Emission Tomography Using 18F-Fluciclovine in Patients with Clinically Suspected High- or Low-grade Gliomas: A Multicenter Phase IIb Trial
Objective(s): The study objective was to assess the diagnostic performance of positron emission tomography (PET) for gliomas using the novel tracer 18F-fluciclovine (anti-[18F]FACBC) and to evaluate the safety of this tracer in patients with clinically suspected gliomas.Methods: Anti-[18F]FACBC was administered to 40 patients with clinically suspected high- or low-grade gliomas, followed by PET...
متن کاملDetection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملAn overview on Ga-68 radiopharmaceuticals for positron emission tomography applications
Gallium-68 a positron emitter radionuclide, with great impact on the nuclear medicine, has been widely used in positron emission tomography (PET) diagnosis of various malignancies in humans during more recent years especially in neuroendocrine tumors (NETs). The vast number of 68Ge/68Ga related generator productions, targeting molecule design (proteins, antibody fragments,...
متن کاملDiagnostic Accuracy of Positron Emission Mammography with 18F-fluorodeoxyglucose in Breast Cancer Tumor of Less than 20 mm in Size
Objective(s): To investigate the diagnostic accuracy of positron emission mammography (PEM) and positron emission tomography/computed tomography (PET/CT) for small breast tumors of less than 20 mm in size.Methods: The study was conducted on a total of 100 subjects (i.e., 50 patients with pathologically proven breast cancer and 50 normal cases of medical screening). The total number of tumors wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Tohoku journal of experimental medicine
دوره 230 3 شماره
صفحات -
تاریخ انتشار 2013